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Abstract

This supplementary materials is mainly composed of
four parts. Firstly, we provided the detailed architectures
of our proposed algorithm in the main paper, in which the
training details are presented as well. Secondly, we con-
ducted a comprehensive evaluation of state-of-the-art algo-
rithms on Blurred-300VW, and RWMB datasets. Thirdly,
we further introduced the proposed benchmark for video
with real-world motion blur (RWMB), and illustrated the
superior and necessity of this dataset. Lastly, in the ap-
pendix, we make a video to evaluate our algorithm on re-
alistic videos. All the datasets (Blurred-300VW, RWMB),
models and codes of this work will be released.

1. Architecture and training

The whole framework of our proposed algorithm is
shown and introduced in the main paper. In this section,
we present the detailed architecture of our framework for
better understanding.

1.1. Structure predictor

Architecture The main function and working flow of the
Structure Predictor is shown in Figure 1.

The main architecture of hourglass employed in Struc-
ture Predictor is introduced in Figure 2. The hourglass has
mirrored encoding (convolution and max-pooling) and de-
coding (convolution and up-sampling) architectures. Skip-
connections shown in the Figure 2 provide connections be-
tween the decoding and encoding feature maps with the

∗The work was done during the internship at SenseTime Research.

Figure 1: Structure Predictor. The Structure Predictor takes
two previous face boundaries as inputs. An hourglass is
used to form the optical flow, and the warping block warp
the previous two boundaries into a new one, which will aid
the motion deblurring in the Structure-aware Motion De-
blurring module

same size. The corresponding feature maps are fused us-
ing element-wise addition. The inputs of the Hourglass are
normalized to (0,1) using the max pixel value.

Figure 2: Hourglass employed in our architecture.

1



The warping block is an interpolation function [5] to
generate next face edge. Given previous two face edges E,
the output of the warping block is:

WWW (E,F ) =
∑

i,j,kε[0,1]

W ijkE(V ijk) (1)

where V are eight vertices of the pixel in the input frames:
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where L0 and L1 are defined as the absolute coordinates
of the corresponding location of the first and second input
frames. And W is the trilinear re-sampling weight:
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where 1
3 and 2

3 corresponds to the weight of the first and
second input frame in the predicted frame.

Training For Structural Predictor pretraining, facial edges
are implemented as inputs. Set current time as t, ground
truth landmarks Lt−1 at last time point t − 1 are converted
to 256 × 256 image Et−1 following the method proposed
in [look at boundary], and the original Et−1 is pushed one
step forward as Et−2. Et−1 and Et−2 are concatenated and
feed to Structural Predictor to predict Et. We fit annotated
landmarks face edges by cubic spline interpolation and use
them as input and ground truth. Gaussian distribution with
standard deviation of 0.01 is used to initialize the weights.
The basic learning rate is 0.001 and decays to its 0.96 every
2, 000 steps. The Structural Predictor is trained 500, 000
steps totally.

1.2. Structure-aware motion deblurring module

Architecture The main function and working flow of the
Structure-aware motion deblurring module is shown in Fig-
ure 3.

Figure 3: Structure-aware Motion Deblurring Module. A
batch of three recent frames and predicted boundary map
concatenate as input. An encoder network extracts needed
information from inputs. Then we use a dynamic temporal
blending network to combine information across different
frames. Finally, a decoder is used to predicts the residual
between blurry frames and ground truth.

Figure 4: Architecture of the Structure-aware Motion De-
blurring network.

The detailed architecture of the Structure-aware Motion
Deblurring Module is illustrated in the Figure 4. The De-
blurring Module is composed of an Encoder, a Decoder and
a Dynamic Blending module. In the Encoder module, four
Residual blocks are utilized to extract information from in-
puts. And in the Decoder module, also four Residual blocks
are utilized to combine information across frames.

As is shown in Figure 5, residual block mentioned in the
Structure-aware Motion Deblurring Module consists two
convolution layer. Skip connection add the input and the
input and the output of convolution layer element-wise.

Training For Structure-aware Motion Deblurring pretrain-
ing, annotation results for current frame is interpolated to
face edge and used as structural information. Face edges



Figure 5: Hourglass employed in our architecture.

Figure 6: Pre-activation Resnet-18 plays the role of the fa-
cial landmark detector in our framework. By using the de-
blurred sharp image as input, the Pre-activation Resnet-18
predicts the landmark location.

and picture series are concatenated and serve as input. Ba-
sic learning rate is 0.0001 and decays to its 0.96 every 2, 000
steps. The Structural Predictor is trained 500, 000 steps to-
tally.

1.3. Pre-activation Resnet

Architecture In our main paper, we take pre-activation
Resnet-18 [3, 4] as the facial landmark detector. The ar-
chitecture if the pre-activation Resnet used in our paper is
shown in Figure 6. The layer details of the pre-activation
Resnet is presented in Figure 7.

As is shown in Figure 7, the pre-activation Resnet-18 is
mainly composed of four Pre-act Res-Block, which is fur-
ther explained in Figure 8.

By putting the ReLU and BN layer forward, the opti-
mization is further eased and using BN as pre-activation
improves regularization of the models. These would benefit
the training process and improve the generalization ability.

Training For facial landmark detector pretraining, the net-
work weights is initialized by MSRA weight initialization
method. Firstly, we trained the model on 300W-dataset
for 1, 000, 000 steps, basic learning rate is 0.0002, and de-
cays to its 0.5 every 200, 000 steps, after that,we fine-tuned
the network on the 300VW dataset and 300W-dataset for
500, 000 steps, reduce the base learning rate to 0.00002, and
also decays to its 0.5 every 100, 000 steps. Of course, some
data augmentation such as trans, rotate, zoom and mirror is

Figure 7: Overall architecture of the Pre-activation Resnet-
18.

Figure 8: According to the [4], the ”full pre-activation”,
namely putting both ReLU and BN before the convolution
layer in the residual block, is a better deformation of the
original Residual Network.

also used in the total training stage.

2. Evaluation of state-of-the-art algorithms
In this section, we conducted the first, to the best of

our knowledge, comprehensive evaluation of state-of-the-
art and classical algorithms on 300VW, Blurred-300VW
and RWMB datasets. We retrained these algorithms with
identical datasets for fair comparison. We used training
strategies and hyper-parameters introduced by the authors.



Method NME
Category A Category B Category C

FAN [1] 10.8498 6.8068 6.1044
RFLD [6] 10.9602 8.1978 4.6273
SAN [2] 5.6192 7.7097 4.3380

SDM [10] 10.4043 8.5230 4.8287
TCDCN [11] 6.8172 7.8907 4.3506

LAB [9] 5.2837 6.0719 3.9563
Ours 4.2396 5.6657 3.1624

Table 1: Mean error normalized by inter-ocular distance,
on Blurred-300VW dataset

Method NME
Category A Category B Category C

FAN [1] 15.6887 9.6413 8.6445
RFLD [6] 15.8117 11.6122 6.5511
SAN [2] 8.1786 10.9207 6.1393

SDM [10] 14.6990 12.0512 6.8066
TCDCN [11] 9.7781 11.1749 6.1578

LAB [9] 7.7321 8.6009 5.5996
Ours 6.1842 8.0253 4.4750

Table 2: Mean error normalized by inter-pupil distance, on
Blurred-300VW dataset

In previous works, differentiated normalization methods
are leveraged in different papers [9, 1, 7]. Disunited normal-
ization methods have make it inconvenient for following re-
searchers to compare results. Therefore, we reimplemented
these state-of-the-art and classical algorithms [10, 11, 1, 6,
2, 9], and reported Normalized Mean Error(NME) normal-
ized with inter-ocular distance, inter-pupil distance and di-
agonal length of the bounding box. We also reported Fail-
ure Rate and Area Under Curve(AUC) with several NME
thresholds. Corresponding Cumulative Error Distribution
(CED) curves are reported in this supplementary material
as well to set complete baselines for future works.

2.1. Evaluation on Blurred-300VW

In this section, we present our evaluation results on
Blurred-300VW dataset.

Blurred-300VW is a dataset we generated from original
300VW, following the blurring method introduced in [8].
20 subframes are generated according to the optical flow.
Then mean value of these 20 subframes is calculated to
mimic motion blur. Annotation of each generated frame
are taken from the middle-time subframe. We show some
blurred pictures in Figure 9.

NME value is normalized with inter-ocular distance,

Method NME
Category A Category B Category C

FAN [1] 4.0833 2.8543 2.3645
RFLD [6] 4.1517 3.4501 1.7822
SAN [2] 2.0466 3.2280 1.6691

SDM [10] 3.4984 3.5356 1.8914
TCDCN [11] 2.5020 3.2999 1.6734

LAB [9] 1.9287 2.5439 1.5304
Ours 1.5314 2.3755 1.2208

Table 3: Mean error normalized by the diagonal length of
the bounding box, on Blurred-300VW dataset

Method NME
inter-ocular inter-pupil diagonal length

FAN [1] 13.7418 19.1374 5.1479
RFLD [6] 16.3358 22.7582 6.0383

TCDCN [11] 10.4791 14.6000 3.8468
SAN [2] 10.3991 14.4885 3.8397
LAB [9] 9.4717 13.1945 3.5258

Ours 8.4317 11.7455 3.1445

Table 4: Mean error normalized by the inter-ocular dis-
tance, inter-pupil distance and diagonal length of the bound-
ing box, on RWMB dataset

inter-pupil distance and diagonal length of the bounding
box. Failure Rate, AUC with various thresholds, and CED
curves are presented.

As is shown in Figure 10, 11 and 12, our algorithm per-
forms state-of-the-art in Category A and Category C with a
great margin. Since the Blurred-300VW data set contains
more blurry images, our algorithm outperforms others with
even greater margin in all three categories. NME is shown
in Table 1, 2 and 3, Failure Rate and AUC are shown in
Table 5, 6, 7, 8, 9, 10, 11, 12 and 13. In each table, mean
error is normalized with different methods. Also, AUC and
failure rate are counted with various threshold values.

We also compare different deblurring and facial land-
mark detection effect in Figure 15 and 14. Images in the
first column are samples of Blurred-300VW. Landmarks of
these blurry faces are presented in the second column. Red
points are ground truth facial landmarks of the input and the
green points are outputs of state-of-the-art facial landmark
detection algorithms. By naively applying state-of-the-art
deblurring and facial landmark detection algorithm, we got
column three and column four. ”Naive” here means a direct
and simple way of concatenation. Lastly, the proposed al-
gorithm in the main paper produces the deblurred picture in
column five and landmarks in column six.



Figure 9: Blurred-300VW generated by interpolating frames and take the mean value. The first and third rows are original
300VW, the second and forth rows are generated Blurred-300VW.

2.2. Evaluation on RWMB

In this section, we present our evaluation on RWMB
dataset.

NME value is normalized with inter-ocular distance,
inter-pupil distance and diagonal length of the bounding
box. Failure Rate, AUC with various thresholds and CED
curves are presented.

As is shown in Figure 13, our algorithm performs state-
of-the-art in our proposed dataset. We also schedule to
release a training set containing more videos with real-
world motion blur in order to make this blurry dataset self-
containing. NME is shown in Table 4, Failure Rate and
AUC are shown in Table 14, 15 and 16. In each table, mean
error is normalized with different methods. Also, AUC and
failure rate are counted with various threshold values.



Method Category A Category B Category C
Failure Rate(%) AUC Failure Rate(%) AUC Failure Rate(%) AUC

FAN [1] 3.7456 0.6107 0.8876 0.6823 0.0533 0.6964
RFLD [6] 14.1309 0.6878 7.4951 0.6827 1.6516 0.7875
SAN [2] 0.8038 0.7438 0.0000 0.6145 0.6390 0.7905

TCDCN [11] 1.4394 0.6815 0.6903 0.6106 0.5328 0.7880
LAB [9] 1.4858 0.7636 0.8876 0.7048 0.0533 0.8030

Ours 0.5262 0.8024 0.0000 0.7167 0.1066 0.8428

Table 5: Failure rate and Area under curve(AUC) with NME threshold 0.2, normalized by inter-ocular distance, on Blurred-
300VW dataset

Method Category A Category B Category C
Failure Rate(%) AUC Failure Rate(%) AUC Failure Rate(%) AUC

FAN [1] 14.5643 0.2659 4.1420 0.3853 0.9590 0.3975
RFLD [6] 25.7700 0.4965 15.5819 0.4347 3.0368 0.5885
SAN [2] 3.4163 0.5068 17.4556 0.3228 0.7987 0.5825

TCDCN [11] 13.8523 0.4627 17.5542 0.3120 1.0655 0.5805
LAB [9] 4.7361 0.5541 2.1696 0.4182 0.5860 0.6112

Ours 3.4670 0.6293 4.1420 0.4585 0.5860 0.6909

Table 6: Failure rate and Area under curve(AUC) with NME threshold 0.1, normalized by inter-ocular distance, on Blurred-
300VW dataset

Method Category A Category B Category C
Failure Rate(%) AUC Failure Rate(%) AUC Failure Rate(%) AUC

FAN [1] 47.9183 0.2025 9.2702 0.2502 3.4630 0.2556
RFLD [6] 32.3015 0.4166 20.1183 0.3158 4.1556 0.4922
SAN [2] 10.6199 0.4244 33.5306 0.2114 0.9052 0.4786

TCDCN [11] 24.2687 0.3888 34.3195 0.2050 2.7171 0.4853
LAB [9] 8.0173 0.4635 9.9606 0.3037 0.6926 0.5147

Ours 6.1136 0.5552 8.1854 0.3419 0.7991 0.6151

Table 7: Failure rate and Area under curve(AUC) with NME threshold 0.08, normalized by inter-ocular distance, on Blurred-
300VW dataset



Method Category A Category B Category C
Failure Rate(%) AUC Failure Rate(%) AUC Failure Rate(%) AUC

FAN [1] 3.7146 0.6394 0.8876 0.6999 0.0533 0.7135
RFLD [6] 13.0166 0.7022 7.0020 0.6968 1.4385 0.7978
SAN [2] 0.6493 0.7615 0.0000 0.6359 0.6390 0.8023

TCDCN [11] 1.2691 0.7039 0.3945 0.6305 0.4795 0.7995
LAB [9] 1.3775 0.7805 0.7890 0.7205 0.0533 0.8141

Ours 0.8667 0.8170 0.1972 0.7325 0.3729 0.8508

Table 8: Failure rate and Area under curve(AUC) with NME threshold 0.3, normalized by inter-pupil distance, on Blurred-
300VW dataset

Method Category A Category B Category C
Failure Rate(%) AUC Failure Rate(%) AUC Failure Rate(%) AUC

FAN [1] 4.3337 0.4631 1.4793 0.5544 0.0533 0.5702
RFLD [6] 18.8980 0.6103 10.5523 0.5757 2.2376 0.7045
SAN [2] 1.2521 0.6477 3.5503 0.4732 0.6922 0.7039

TCDCN [11] 5.1850 0.5842 3.2544 0.4643 0.6926 0.7012
LAB [9] 2.2442 0.6785 1.0848 0.5835 0.2131 0.7226

Ours 0.8667 0.7286 0.1972 0.6001 0.3729 0.7799

Table 9: Failure rate and Area under curve(AUC) with NME threshold 0.2, normalized by inter-pupil distance, on Blurred-
300VW dataset

Method Category A Category B Category C
Failure Rate(%) AUC Failure Rate(%) AUC Failure Rate(%) AUC

FAN [1] 63.0707 0.1863 18.2446 0.1725 10.3889 0.1729
RFLD [6] 36.4495 0.3790 27.5148 0.2533 5.5940 0.4322
SAN [2] 15.0873 0.3816 49.9014 0.1623 1.7572 0.4138

TCDCN [11] 31.3729 0.3600 48.8166 0.1445 6.0735 0.4338
LAB [9] 9.3329 0.4103 18.4418 0.2381 0.7991 0.4511

Ours 7.7387 0.5151 12.4260 0.2694 0.7991 0.5643

Table 10: Failure rate and Area under curve(AUC) with NME threshold 0.1, normalized by inter-pupil distance, on Blurred-
300VW dataset



Method Category A Category B Category C
Failure Rate(%) AUC Failure Rate(%) AUC Failure Rate(%) AUC

FAN [1] 3.6682 0.7036 0.8876 0.7339 0.0533 0.7648
RFLD [6] 10.5711 0.7376 6.3116 0.7268 0.4262 0.8271
SAN [2] 0.5256 0.8049 0.0000 0.6772 0.0533 0.8338

TCDCN [11] 0.7274 0.7568 0.1972 0.6714 0.0000 0.8326
LAB [9] 1.0060 0.8179 0.5917 0.7507 0.0533 0.8475

Ours 0.4179 0.8518 0.0000 0.7625 0.0000 0.8779

Table 11: Failure rate and Area under curve(AUC) with NME threshold 0.1, normalized by diagonal length of the bounding
box, on Blurred-300VW dataset

Method Category A Category B Category C
Failure Rate(%) AUC Failure Rate(%) AUC Failure Rate(%) AUC

FAN [1] 3.7456 0.6300 0.9862 0.6681 0.0533 0.7059
RFLD [6] 13.4345 0.6979 7.6923 0.6702 1.2254 0.7910
SAN [2] 0.7111 0.7577 0.0000 0.5965 0.5325 0.7962

TCDCN [11] 1.2227 0.7001 1.1834 0.5959 0.0533 0.7912
LAB [9] 1.4549 0.7765 0.8876 0.6910 0.0533 0.8094

Ours 0.4798 0.8154 0.0000 0.7031 0.0000 0.8474

Table 12: Failure rate and Area under curve(AUC) with NME threshold 0.08, normalized by diagonal length of the bounding
box, on Blurred-300VW dataset

Method Category A Category B Category C
Failure Rate(%) AUC Failure Rate(%) AUC Failure Rate(%) AUC

FAN [1] 4.6897 0.4141 2.4655 0.4784 0.1598 0.5301
RFLD [6] 20.4148 0.5847 12.5247 0.5142 2.3442 0.6769
SAN [2] 1.5013 0.6193 7.5099 0.3977 0.6930 0.6758

TCDCN [11] 4.9837 0.5477 7.6923 0.3894 0.6926 0.6729
LAB [9] 2.5693 0.6529 1.3807 0.5090 0.1066 0.6955

Ours 0.9596 0.7090 1.5779 0.5344 0.1598 0.7572

Table 13: Failure rate and Area under curve(AUC) with NME threshold 0.05, normalized by diagonal length of the bounding
box, on Blurred-300VW dataset



Figure 10: CED curves for testing results on Blurred-300VW, normalized by the distance between outer eye corner. Three
sub-Figures from left to right corresponds to Category A, Category B and Category C.

Figure 11: CED curves for testing results on Blurred-300VW, normalized by the distance between eye centers. Three sub-
figures from left to right corresponds to Category A, Category B and Category C.

Figure 12: CED curves for testing results on Blurred-300VW, normalized by diagonal length of the bounding box. Three
sub-figures from left to right corresponds to Category A, Category B and Category C.



Method NME threshold: 0.2 NME threshold: 0.1 NME threshold: 0.08
Failure Rate(%) AUC Failure Rate(%) AUC Failure Rate(%) AUC

FAN [1] 10.4162 0.5580 34.1836 0.2784 53.2606 0.1823
RFLD [6] 25.6669 0.5930 44.8399 0.3789 54.3852 0.2947

TCDCN [11] 11.2734 0.6045 34.8214 0.4154 45.7930 0.3474
SAN [2] 11.7909 0.6276 31.3739 0.4114 40.9356 0.3557
LAB [9] 8.2836 0.6093 32.1950 0.4254 41.1164 0.3426

Ours 5.2462 0.6272 28.7715 0.4523 38.5429 0.3846

Table 14: Failure rate and Area under curve(AUC), normalized by inter-ocular distance, on RWMB dataset

Method NME threshold: 0.3 NME threshold: 0.2 NME threshold: 0.1
Failure Rate(%) AUC Failure Rate(%) AUC Failure Rate(%) AUC

FAN [1] 9.3534 0.5833 17.9181 0.4357 65.0415 0.1399
RFLD [6] 24.1788 0.6109 32.6065 0.4967 60.3099 0.2562

TCDCN [11] 9.9362 0.6241 19.5159 0.5123 51.5600 0.3139
SAN [2] 10.4465 0.6451 18.6158 0.5370 46.0937 0.3159
LAB [9] 6.9876 0.6289 16.4644 0.5177 46.6365 0.3025

Ours 4.1406 0.6467 12.8682 0.5372 43.7067 0.3496

Table 15: Failure rate and Area under curve(AUC), normalized by inter-pupil distance, on RWMB dataset

Method NME threshold: 0.1 NME threshold: 0.08 NME threshold: 0.05
Failure Rate(%) AUC Failure Rate(%) AUC Failure Rate(%) AUC

FAN [1] 5.4447 0.6297 7.3442 0.5503 18.5490 0.3481
RFLD [6] 18.0964 0.6238 23.6645 0.5767 35.3700 0.4301

TCDCN [11] 3.8812 0.6479 8.0985 0.5910 22.5948 0.4537
SAN [2] 4.484 0.6687 8.6083 0.6148 20.5432 0.4793
LAB [9] 2.1189 0.6660 4.4092 0.5987 18.5764 0.4574

Ours 0.4807 0.6902 1.5931 0.6207 13.5618 0.4776

Table 16: Failure rate and Area under curve(AUC), normalized by diagonal length of the bounding box, on RWMB dataset

Figure 13: CED curves for testing results on RWMB data set. Three sub-figures from left to right corresponds to different
normalization methods: by inter-ocular distance, by inter-pupil distance and by diagonal length of the bounding box



Figure 14: Deblurring effect and landmark accuracy comparison. Images in the first column are samples of Blurred-300VW.
Landmarks of these blurry faces are presented in the second column. Red points are ground truth facial landmarks of the input
and the green points are outputs of state-of-the-art facial landmark detection algorithms. By naively applying state-of-the-art
deblurring and facial landmark detection algorithm, we got column three and column four. The proposed algorithm in the
main paper produces the deblurred picture in column five and landmarks in column six.



Figure 15: Deblurring effect and landmark accuracy comparison.



Figure 16: Annotation results of our RWMB dataset.



3. Benchmark: Real-World Motion Blur
Blurry faces in 300VW are not enough, less than in

real-world circumstances, since the contents of videos in
300VW are mainly speeches and lectures. However, mo-
tion blur is common in realistic videos. Therefore, a dataset
with severe motion blur is required.

As is mention in the main paper, we proposed a new
benchmark named Real-World Motion Blur (RWMB). It
contains 20 videos with obvious motion blur picked from
YouTube, which include dancing, boxing, jumping, etc.
The duration of each video is about one minute, thus
each video contains approximately 1,800 frames. Hence,
roughly 36,000 faces are annotated with 68 landmarks.

It is challenging to determine the specific location of
each landmark. The annotation of previous frame is pre-
sented to the annotator as reference. Each frame is anno-
tated by three expert annotators and checked by two quality
inspectors.

We randomly picked one frame in each video and show
the annotation results in Figure 16. Samples show that our
annotation is accurate no matter the frame is clear or blurry.

4. Evaluate on realistic videos
In the YouTube, we presented the evaluation results of

our algorithm on realistic videos, and compare it with other
state-of-the-art facial landmark localization algorithms.
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